Tuesday, 20 April

[OMC-1] 10:30-12:15 OMC-1

Chairs: Takashige Omatsu Chiba University Ryuji Morita Hokkaido University

OMC-Opening 10:30 Opening Remarks

OMC-1-01 10:45

Laser transverse modes with SU(2) representation Yung-Fu Chen

Invited

National Yang Ming Chiao Tung University We give a detailed overview of the theoretical description of the Hermite-Laguerre-Gaussian mode from the representation of SU(2) in the Jordan-Schwinger diagram.

OMC-1-02 11:15

Generation of geometrical Laguerre-Gaussian modes from a Nd:GdVO₄ laser with a degenerate cavity configuration

Yuanyuan Ma¹, Andrew J Lee², Helen M Pask², Katsuhiko Miyamoto^{1,3}, Takashige Omatsu^{1,3} ¹Chiba university, ²MQ Photonics Research Centre, Macquarie University, ³Molecular Chirality Research Center

We demonstrate the direct generation of geometrical Laguerre-Gaussian (LG) modes from an annular beam pumped Nd:GdVO₄ laser with a degeneracy cavity configuration. Such geometrical LG modes pave the way towards a myriad of applications, such as optical/quantum communication, optical trapping, and micro-fabrications.

OMC-1-03 11:30

Vector vortex generation from Raman laser cavity

Voshihiro Nishigata¹, Shun Sasaki¹, Katsuhiko Miyamoto^{1,2}, Takashige Omatsu^{1,2} ¹ Chiba University, ²Molecular Chirality Research Center, Chiba University

The vector vortex mode generation from a Ba(NO₃)₂ Raman laser cavity pumped by a vector LG_{0.2} green laser was demonstrated. The 1st, 2^{ml}, 3rd, and 4th Stokes outputs operated at a radially polarized mode. The maximum output energies of the 1st, 2nd, 3rd, and 4th Stokes were measured to be 0.33 mJ, 0.50 mJ, 0.32mJ and 0.03 mJ, respectively, at the maximum pump energy of 4.39 mJ.

OMC-1-04 11:45

Fiber optic one-dimensional Airy-like beam generation by creating an offset between the cylindrical lens and the fiber endface

Hyeonwoo Lee, Hyeung Joo Lee, Juwon Yoon, Kyunghwan Oh *Yonsei univerisity*

Airy beam has been attracting the attention of current researchers for its unique characteristics such as self-healing property, non-diffractive nature, and self-accelerating beam trajectory. Here, we propose the generation of a fiber optic one-dimensional Airy-like beam using a micro-scale cylindrical lens. Furthermore, its intensity demonstrated a curved trajectory, which originates from the self-accelerating nature of the Airy-like beam.

OMC-1-05 12:00

Dispersion control of orbital angular momentum mode using a ring core with graded-index profile

Yong Soo Lee¹, Aeri Jung¹, Soeun Kim², Kyunghwan Oh¹

¹Yonsei University, ²GIST We propose an orbital angular momentum (OAM) photonic crystal fiber (PCF) that can control the dispersion of OAM mode by using a ring-core to which a graded-index profile is applied. Using the full-vectorial finite element method (FEM), the properties of the proposed OAM PCF were analyzed. We found that when the thickness of the ring-core to which the graded-index profile was applied is reduced, the dispersions of the modes guided to the core decrease overall.

[OMC-2] 15:30-17:00 OMC-2

Chairs: Masaaki Ashida Osaka University Sile Nic Chormaic OIST

OMC-2-01 15:30

Optical trapping of Poly(Nisopropylacrylamide) gel particles using metalic nanostructures Maho Kubota¹, Miyako lida¹,

Sayaka Hashimoto¹, Tatsuya Shoji², Yasuyuki Tsuboi¹

¹Osaka City University, ²Kanagawa University We investigated the optical trapping of gel particles with a new optical tweezers using nanostructured titanium crystals. When a laser beam was irradiated to the crystal, fluorescent gel particles were immediately trapped at the irradiation area. Furthermore, fluorescence spectroscopy analysis showed that fluorescence intensity increased upon trapping.

OMC-2-02 15:45

Analysis on spatial distribution of Poynting vectors for multimer plasmonic fields

Yuji Sunaba, Keiji Sasaki BIES Hokkaido University

We investigated the optical rotational manipulation in localized plasmonic fields with spin and orbital angular momenta. To clarify the force exerted on nanoparticles, we analyzed spatial distribution of Poynting vectors related to scattering force.

OMC-2-03 16:00

Orbital angular momentum mode generation using anisotrophic liquid crystal filled capillary

Hucksu Choi¹, Yongsoo Lee¹, Jonghee Eun², joonwo jung², Kyunghwan Oh¹ ¹Yonsei University, ²UNIST

It is known that chiral doped 5CB under a capillary boundary condition form a double-twist self-assembly structure. Since birefringence of 5CB has a negative charge, the double-twist structure is equivalent to the graded ring core waveguide. Since optical axis of LC structure has a topological charge, LP modes split into OAM modes. Also the chiral asymmetry of the waveguide made the nonzero OAM mode to be the highest effective index.

OMC-2-04 16:15

Spiral surface relief formation with Hermite-Gaussian beams with zero orbital angular momentum Arata Tomita¹. Adam Vallés^{1,2}.

Katsuhiko Miyamoto^{1,2}, Takashige Omatsu^{1,2} 'Graduate School of Science and Engineering, Chiba University, ²Molecular Chirality Research Center, Chiba University

We demonstrate the formation of spiral surface relief of azo-polymers by irradiation of a rotating Hermite-Gaussian beam with zero orbital angular momentum. This approach offers new fundamental physical insight of light matter interaction, and it paves the way towards advanced ultrahigh density optical data storages.

OMC-2-05 16:30

Spin-orbit modal shaping of optical orbital angular momentum states Etienne Brasselet

Invited

University of Bordeaux

When dealing with fields carrying orbital angular momentum usually, the control of both the azimuthal and the radial degrees of freedom remains an open fundamental and practical challenge. Here we present our recent developments of spin-orbit modal beam shapers in the context of light beams carrying orbital angular momentum.

Wednesday, 21 April

[OMC-3] 9:00-10:30 OMC-3

Chairs: Kei Murakoshi Hokkaido University Keiji Sasaki Hokkaido University

OMC-3-01 9:00

Detection of Radiation Force due to Simultaneous Two-photon Absorption

Syoji Ito, Mizuki Hayasaka, Masato Mori, Masafumi Koga, Shinya Nakamura, Kenji Setoura, Hikaru Sotome, Hiroshi Miyasaka *Osaka Univesity*

A polymer particle containing dye molecules was optically trapped with pulsed laser (800 nm, 200 fs). The trapping point shifted on the optical (Z-) axis towards the propagation direction of the femtosecond laser with increasing laser power. The Z-displacement was dependent on incident laser power and, from which we concluded that the positional shift along the Z-axis can be ascribed to the radiation force due to simultaneous two-photon absorption.

OMC-3-02 9:15

Optical trapping of amyloid fibrils of hen egg-white lysozyme

Ken-ichi Yuyama, Mai Miyazaki, Yasuyuki Tsuboi *Osaka City University*

We demonstrate optical trapping of protein amyloid fibrils with the use of a tightly focused laser beam.Upon the focused laser irradiation, amyloid fibrils are attracted toward the laser focus and stably trapped there. After switching off the laser, the trapped amyloids start diffusion to the surrounding solution. Thus, optical force is effectively exerted on protein amyloid fibrils and useful to trap, assembly, and manipulate them.

OMC-3-03 9:30

Observation of Optical Molecuar Manipulation Dynamics at Solid-Liquid Interface via Surface Enhanced Raman Scattering

Nobuaki Oyamada, Hiro Minamimoto, Kei Murakoshi

Hokkaido University

Electric field induced by plasmon resonance could retard the Brownian motion at solid-liquid interface. We tried to reveal the factors for molecular manipulation within the localized electric field through SERS observations using Au array structure.

OMC-3-04 9:45

Optical trapping and assembly of particle clusters using hybrid plasmonic-photonic nanotweezers Christophe Pin^{1,2,3}, Giovanni Magno^{4,5},

Aurore Ecarnot⁴, Emmanuel Picard², Emmanuel Hadji², Vy Yam⁴, Frédérique de Fornel¹, Béatrice Dagens⁴, Benoît Cluzel¹

¹ICB, Université Bourgogne Franche-Comté, ²CEA Grenoble, Université Grenoble Alpes, ³RIES, Hokkaido University, ⁴C2N, Université Paris-Saclay, ⁵DEI, Politeonico di Bari A periodic chain of gold nanorods coupled to a silicon waveguide is used to trap single beads and self-assembled bead clusters. The trapping efficiency and the stability of several cluster configurations are statistically analyzed.

Schwinger ulag

Wednesday, 21 April

OMC-3-05 10:00

Size Separation of polymer gels using Plasmonic Optical Tweezers

Sayuri Wake¹, Tatsuya Shoji², Yasuyuki Tsuboi¹ ⁷*Osaka City University,* ²*Kanagawa University* We demonstrate plasmonic optical trapping of two types of thermoresponsive polymer gel particles labelled with fluorescent probes. The two types of polymer gel particles were trapped in accordance with their size in. Smaller gel particles were trapped near the irradiation area and larger gel particles. We discuss a mechanism of separation of these particles.

OMC-3-06 10:15

Optical vortex induced microdroplet with a plasmonic nanocore

Haruki Kawaguchi¹, Kei Umesato¹, Kanta Takahashi¹, Keisaku Yamane², Ken-ichi Yuyama², Satoyuki Kawano⁴, Katsuhiko Miyamoto^{1,5}, Takadhige Omatsu^{1,5} ¹ Graduate School of Engineering, Chiba University, ²Department of Applied Physics, Hokkaido University, ³Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, ⁵Molecular Chirality Research Center, Chiba University

We demonstrate the creation of a microdroplet with a plasmonic Au nanoparticle core by employing the optical vortex laser-induced forward transfer technology. This Au particle is printed as a plasmonic nanocre with super spatial resolution.

[OMC-4] 11:00-12:00 OMC-4

Chair: Satoshi Ashihara University of Tokyo

OMC-4-01 11:00

Optical trapping of a nanoparticle by a copper nanoantenna Zhe Xu^{1.23}

¹Inspur Electronic Information Industry Co., Ltd., ²State Key Laboratory of High-end Server & Storage Technology, ³Inspur (Beijing) Electronic Information Industry Co., Ltd.

We demonstrate the optical trapping of a single dielectric nanoparticle in a microfiluidic chamber using a coupled T-shaped copper plasmonic nanoantenna at 1064 nm wavelength for studying lightmatter interactions. We present the finite element method numerical simulations to clarify the optical trapping process, including near-field distributions, optical forces, temperature rises, and thermal-induced fluid velocities.

OMC-4-02 11:15

Fluid convection driven by suspended particles in optical trapping

Tetsuro Tsuji¹, Chie Hosokawa^{2,3}, Tatsunori Kishimoto^{2,4}, Takumi Okubo⁵, Suguru N. Kudoh⁴, Satoyuki Kawano⁵ ¹Kyoto University, ²Osaka City University, ³National Institute of Advanced Industrial Science and Technology, ⁴Kwansei Gakuin University, ⁵Osaka University

We investigate a fluid convection induced by a focused laser beam in optical trapping. It is shown that the optical scattering force, which pushes suspended particles in the beam propagation direction, drags the fluid and can induce the convection. Such type of convection is significant compared with thermal convection for the dispersion of relatively large particles with the order of diameter 1 µm.

OMC-4-03 11:30

Analysis of small plastics in coastal surface water samples of Okinawa using optical tweezers-Raman spectroscopy

Domna G. Kotsifaki¹, Christina Ripken^{1,2}, Sile Nic Chormaic¹ ¹Light-Matter Interactions for Quantum

Technologies Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan, ²Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan

We employ an optical trapping-Raman spectroscopy technique for simultaneous characterization and monitoring of the physical and chemical properties of single small micro-plastics in a seawater environment. Through analysis of the data, we chemically identify the plastic and distinguish it from organic matter and/or mineral sediments. We categorize the particles based on their size and shapes. The technique paves the way for monitoring marine plastic pollution.

OMC-4-04 11:45

Optical Gradient Force on Gold Chiral Nanoparticles

Junsuke Yamanishi¹, Hyo-Yong Ahn¹, Shun Hashiyada², Ki Tae Nam³, Hiromi Okamoto¹ *'Institute for Molecular Science, ² RIKEN Center for Advanced Photonics, ³ Seoul National*

University We investigate the CP-dependent gradient force on the chiral gold nanoparticles. We found that the dispersion of the position of the Brownian motion depends on the handedness of the incident light in both cases of D- and L-form particles.

[OMC-5] 13:30-15:00 OMC-5

Chair: Hajime Ishihara Osaka University

OMC-5-01 13:30

Lensless phase retrieval based on convolutional neural network for holographic storage

Jianying Hao', Xiao Lin^{1,2,3}, Mingyong Chen¹, Yongkun Lin¹, Xiaodi Tan^{1,2,3}, Yuhong Ren¹ ¹College of Photonic and Electronic Engineering, Fujian Normal University, ²Fujian Provincial Key Laboratory of Photonics Technology, ³Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application

In this paper, a lensless non-interferometric phase retrieval method based on deep learning is proposed. We use a neural convolutional network to establish the relationship between the intensity images and the phase data pages. The phase can be retrieved directly by feeding the intensity image to the trained neural network.

OMC-5-02 13:45

Theoretical Study on Modeling and Sorting of Real Chiral Molecules by Using Resonant Optical Force Takao Horai¹, Hiroki Eguchi¹, Takuya Iida¹, Haime Ishihara^{1,2}

¹Osaka Prefecture University, ²Osaka University We theoretically study the chiral molecular sorting by using resonant optical force. Based on the coupled dipole model of a dye-molecule with chirality, we evaluate the optical force difference when irradiating the counter-propagating light waves with different circular polarizations. The result indicates the possibility of chiral molecular sorting by resonant optical force.

OMC-5-03 14:00

Low-damage and large scale optical condensation of useful bacteria with bubble-mimetic substrate

Kota Hayashi^{1,2,3}, Mamoru Tamura^{1,3}, Shiho Tokonami^{2,3}, Takuya lida^{1,3} ¹Grad. Sch. Sci. in Osaka Pref. Univ., ²Grad. Sch. Eng. in Osaka Pref. Univ., ³RILACS in Osaka Pref. Univ.

The substrate to control spatial configuration of heat generation by photothermal effect based on laser irradiation on metallic nanostructure enabled to assemble microbes by light-induced convection without thermal damage.

OMC-5-04 14:15

Interaction optical torque induced by plasmon coupling

An'an Wu, Yoshito Y Tanaka, Tsutomu Shimura The University of Tokyo

Interaction optical torque can be generated and enhanced by the plasmon coupling between twisted nanorods, depending its configuration. It implements the rotations to mutually perpendicular and parallel arrangements of the nanorods with different mode excitations.

OMC-5-05 14:30

Isotopic Hydrogen Evolution Reactions under Plasmonic Excitation

Hiro Minamimoto, Daiki Sato, Kei Murakoshi Hokkaido University

The excitation of the localized surface plasmon leads to the generation of highly localized electric field. The huge field gradient within the field can manipulate molecular behavior, resulting in the modulation of chemical reactions. In this study, we have observed the effect of the plasmonic excitation on the plasmoninduced hydrogen evolution reactions through various photoelectrochemical measurements.

OMC-5-06 14:45

Laser processing simulation for Marangoni-driven needle formation under optical vortex

Mamoru Tamura¹, Takashige Omatsu², Takuya lida¹ ¹Osaka Prefecture University, ²Chiba University

Using the simulation method to solve the thermo-fluid dynamics of molten metal under laser heating, we found the Marangoni effect can contribute to the needle formation in the optical vortex laser processing.

[OMC-6] 15:30-17:00 OMC-6 Chair: Rvuii Morita

Hokkaido University

OMC-6-01 15:30

Detection of the transverse spin of light by twisting anisotropic particles near an optical nanofiber waveguide Georgiy Tkachenko¹, Ivan Toftul²,

Alexey Vylegzhanin', Viet Giang Truong', Mihail Petrov², Sile Nic Chormaic' ¹Okinawa Institute of Science and Technology, ²ITMO University

We report on a direct optomechanical detection of the transverse spin angular momentum of light by spinning an anisotropic microparticle in the evanescent field near a single-mode optical nanofiber waveguide.

OMC-6-02 15:45

Electromagnetic near-field responses of a chiral molecule on a metal surface Hikaru Yoneji¹, Nobuhiko Yokoshi¹, Haiime Ishihara^{1,2}

¹*Osaka Prefecture University,* ²*Osaka University* We developed a generalized discrete dipole approximation method that treats both electric and magnetic polarizations simultaneously and investigated near-field electric and near-field magnetic fields for a single achiral/chiral molecule in the vicinity of gold nanostructures.

OMC-6-03 16:00

Non-equilibrium Properties of an Active Nanoparticle in a Harmonic Potential

Falko Schmidt², Giovanni Volpe², Hana Sipova-Jungova³, Mikael Käll³, Alois Wurger¹

¹The University of Bordeaux, ²University of Gothenburg, ³Chalmers University

We study active gold nanoparticles in a nearcritical water-lutidine mixture, heated and trapped by a focussed laser beam. As their mean free path becomes comparable to the trap radius, we observe a non-equilibrium probability density, differing significantly from the Boltzmann distribution. The particles show orbital motion in the trap and dynamical polarization, that is, their position in the trap and the orientation of their active axis are correlated.

OMC-6-04 16:30

Invited

Hydrodynamic micro manipulation on an optical tweezers platform

Une Butaite¹, David Phillips¹, Jonathan Taylor², Graham Gibson², Ying-Lung Ho³, Mike Taverne³ ¹University of Exeter, ²University of Glasgow, ³University of Bristol

While extremely useful, optical tweezers are nonetheless limited by the types of materials that they can trap, and can be harmful for living organisms. In our work we propose a new platform where optically trapped micro-rotors immersed in water act as fluid impellers to facilitate real-time feedback control of any freely diffusing particle.

Invited

Thursday, 22 April

[OMC-7] 9:00-10:30 OMC-7

Chairs: Kyoko Kitamura Kyoto Institute of Technology Takashige Omatsu Chiba University

OMC-7-01 9:00

Optical fiber-based traps for particle trapping and manipulation

Sile Nic Chormaic

Okinawa Institute of Science and Technology Graduate University

Optical traps using optical fibers facilitate the trapping and characterization of different particles. We will introduce several configurations and illustrate the variety of measurements that can be made.

OMC-7-02 9:30

Optical trapping of nanoparticles suspended in water with a bull's eye-type plasmonic chip

Takashi Koizumi¹, Tomoya Nagasue², Keiko Tawa², Chie Hosokawa¹ ¹Osaka City University, ²Kwansei Gakuin University

We demonstrate surface plasmon resonance (SPR) based optical trapping of quantum-dot (DD) nanoparticles suspended in water with a bull's eye-type plasmonic chip. The particle dynamics of QD suspensions at the laser focus was evaluated by fluorescence correlation spectroscopy.

OMC-7-03 9:45

Tapered glass capillaries for the optical manipulation and sorting of nanoparticles: practical considerations Objects by Dis Dubbio Object of the Section Sec

Christophe Pin, Ryohei Otsuka, Keiji Sasaki Hokkaido University

Optical sorting techniques based on tapered glass capillaries are studied. Optical transport and sorting of fluorescent nanodiamonds based on their size is demonstrated. Methods to improve light-guiding properties and prevent uncontrolled liquid flow are discussed.

OMC-7-04 10:00

Deformation of Optical Vortex Beam by Off-axis Incident-beam from Spiral Phase Plate Center

Miki Kitazawa, Kyoko Kitamura, Shogo Ura Kyoto Institute of Technology An optical vortex beam (OVB) is obtained

An optical vortex beam (OVB) is obtained when a Gaussian beam is transmitted through an appropriately designed spiral phase plate (SPP). The OVB can be deformed by displacements of the optical axis of the incident Gaussian beam from the center of the SPP. We calculated the deformation of OVB using theoretical simulations and discussed the results. These results are important for fabrication of a SPP integrated laser.

OMC-7-05 10:15

Abrupt U-turn of the dielectric particle by anti-parallel fiber optic Bessel beams

Yoon juwon The University of Yonsei

Invited

We suggest a new way of using Bessel beams to achieve n-dimensional optical control of high-refractive index microparticles. The non-diffractive property of this beam, the beam diameter is much longer than that of a general Gaussian beam and has a self-healing property that suppresses the deformation of the beam.

[OMC-8] 11:15-12:00 OMC-8

Chair: Christophe Pin Hokkaido University

OMC-8-02 11:15

Acousto-optic annular beam shaping for optical traps and lattices Dmitry V. Obydennov ^{1,2}, Konstantin B. Yushkov¹, Vladimir Ya. Molchanov¹ 'Ivational University of Science and Technology *MISIS, ²Lomonosov Moscow State University* We propose a novel concept of using a noncollinear AOTF as a spatial beam shaping device for programmable laser beam shaping. The AOTF transfer function symmetry is used to provide a ring-shaped field distribution.

OMC-8-03 11:30 Invited Environmental sensing with structured beams

Martin Philip John Lavery¹, Zhaozhong Chen¹, Mingjian Chen², David McKee³, Alison Yao³ ¹University of Glasgow, ²Xidian University, ³University of Strathclyde

We will present an overview of research progress in the application of the novel optical interactions of spatially structured optical modes for environmental sensing, leading to increased measurement sensitivity of suspended particulates and environmental properties.

[OMC-9] 13:30-15:00

OMC-9 Chair: Yoko Miyamoto The University of Electro-Communications

OMC-9-01 13:30

Observation of the Dyakonov surface wave mode propagating at a hyperbolic metasurface at the visible frequency

Jingbo Sun, Yan Li, Yongzheng Wen, Ji Zhou School of materials science and engineering Tsinghua University

We experimentally demonstrate the Dyakonov surface wave mode at visible frequency in a hyperbolic metasurface, which is highly directional and lossless, and has significant applications in twodimensional photonic circuits and devices.

OMC-9-02 14:00

Incoherent Optical Tweezer on a Nanostructured Rare Metal Sayaka Hashimoto, Ryota Takao, Ken-Ichi Yuyama, Tatsuya Shoji, Yasuyuki Tsuboi *Osaka City University* We demonstrate a technique of stable optical trapping of submicron polymeric beads on nanostructured rare metal surfaces (RMS) without the use of lasers. Fluorescent polymer beads with diameter d = 20 - 500nm were successfully trapped on the nanostructured RMS by low-intensity focused illumination of incoherent light at $\lambda = 370$ m from a Hg lamp.

OMC-9-03 14:15

Optical properties of semiconductor microspheres fabricated via laser ablation in superfluid helium Yosuke Minowa. Tomoki Nagao.

Masaaki Ashida Osaka University

We fabricated semiconductor microspheres via pulsed laser ablation in superfluid helium. We demonstrated that the microspheres with voids can have a high-quality-factor whispering gallery mode if the void is positioned near the microsphere's center.

OMC-9-04 14:30

Invited

Autonomous vibration of a luminescent thin film arising from luminescence-induced optical force

Hideki Arahari¹, Hajime Ishihara^{1,2} ¹Osaka Prefecture University, ²Osaka University We propose an unconventional type of optical manipulation by luminescenceinduced optical force (LiOF). Designing the dielectric environment surrounding materials, the LiOF can be generated. Here, we demonstrate that LiOF autonomously drives the motion of materials.

OMC-9-05 14:45

Accelerating Bessel-like beam Hyeung Joo Lee, Hyeonwoo Lee,

Kyunghwan Oh

Yonesei University Optical tweezing technology is used for versatile micro-nano particle manipulations. For trajectory control, a variety of selfaccelerating beams with bending trajectory have been investigated. However, because of their imperfection of low curvature in microscopic environment, we devised new all-fiber self-accelerating Bessel-like beam generator enhanced with high curvature. This research would contribute to living cell or micro particle manipulation.

[OMC-10] 15:30-17:00 Ashkin & Saenz Memorial Chair: Takashige Omatsu

Chiba University

OMC-10 15:30 Panel Discussion

OMC-Closing 16:50 Closing Remarks

Poster (Live Poster Session: Thu. 22 April, 12:30-13:30)

[OMC-P]

Poster Session

OMC-P-01

Synthesis of ring-shaped Ag-Pt nanoparticles for the application to plasmon-enhanced electrocatalysts

Tatsuya Kameyama^{1,2}, Naoki Ota¹, Kosuke Sasamoto¹, Tsukasa Torimoto¹ ¹Nagoya University, ²JST-PRESTO

Ring-shaped Ag-Pt nanoparticles (NRs) showing an LSPR peak were prepared via galvanic replacement of Ag nanoplates with H₂PtCl. The intensity and wavelength of the peak was controllable by changing the chemical composition of the NRs. The Ag-Pt NRs exhibited an electrocatalytic activity for oxygen reduction reaction, which was enhanced by the photoexcitation of LSPR.

OMC-P-02

Design of AIN-subwavelength grating for deep ultraviolet wavelength reflector operating at 244 nm of wavelength

Yuusuke Takashima^{1,2}, Atsuki Sasada¹, Kentaro Nagamatsu^{1,2,3},

Masanobu Haraguch^{1,2,3} Yoshiki Naoi^{1,2,3} ¹Faculty of Science and Technology, Tokushima University, ²Graduate School of Technology, Industrial and Social Science, Tokushima University, ³Institute of Post-LED Photonics, Tokushima University

Highly reflective reflector (> 99.9%) operating at deep ultraviolet (DUV) wavelength region around 244 nm was proposed by using subwavelength grating (SWG) patterned AIN substrate.This extremely high reflectivity, polarization selectivity and compactness of our AIN-SWG are very useful for various DUV applications, such as cavity of DUV laser diodes.

OMC-P-03

An improved phase retrieval method in holographic data storage based on embedded encoding

changyu yu¹, S. Wang¹, Ruixian Chen¹, Jianying Hao¹, Qijing Zheng¹, Jinyu Wang¹, Xianying Qiu¹, Dakui Lin¹, Yi Yang¹, Hui Li^{1,3}, Xiaodi Tan², Xiao Lin¹

¹Fujian Normal University, ²Fujian Provincial Key Laboratory of Photonics Technology, Fuzhou, ³Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, Fuzhou

This paper proposes to use embedded data to improve the intensity of high-frequency information in the Fourier intensity distribution, thereby improving noise immunity. In simulation, the convergence speed of BER (the bit error rate) is faster under the same number of iterations.

OMC-P-04

Phase retrieval by aberration compensation in holographic data storage

Suping Wang¹, Changyu Yu¹, Ruixian Chen¹, Jianying Hao¹, Qijing Zheng¹, Jinyu Wang¹, Xianying Qiu¹, Dakui Lin¹, Yi Yang¹, Hui Li^{1,3}, Xiao Lin¹, Xiaodi Tan² *¹ Eujian Normal University, ² Eujian Provincial Key Laboratory of Photonics Technology, Fuzhou, ³ Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, Fuzhou* In this paper, we mainly study the influence of spherical aberration on phase transformation. By establishing the light field with wavefront aberration on phase recovery and propose the image restoration algorithm for aberration compensation .The feasibility of the theory is proved.

OMC-P-05

Electrochromic performance of an all-solid-state ITO/W03/Li-Nb03/V205/ ITO electrochromic device deposited by magnetron sputtering

RI-JUN Li, Hsi-Chao Chen, Yu-Hung Yen, Tan-Fu Liu, Bo-Jun Guo, Chi-Yang Lai, Chu-Han Huang National Yunlin University of Science and Technology

The proposal of the research was used vanadium pentoxide (V_2O_5) as an auxiliary discoloration layer was deposited by magnetron sputtering with different oxygen flow, and the cycle durability and transmittance variation were investigated using a spectrophotometer.

OMC-P-06

Collinear non-interferometric phase retrieval holographic data storage with single reference pixel

Qijing Zheng¹, Xianying Qiu¹, Jianying Hao¹, Ruixian Chen¹, Changyu Yu¹, Suping Wang¹, Kun Wang¹, Yi Yang¹, Dakui Lin¹, Hui Li^{1,2}, Xiao Lin¹, Xiaodi Tan^{1,3} *Teujian Normal University of China*, ²Fujian

Provincial Engineering Technology Research Center of Photoelectric Sensing Application, ³Fujian Provincial Key Laborator y of Photonics Technology

A method for collinear non-interferometric phase retrieval holographic data storage using a single reference pixel is proposed. Increasing the intensity of the reference beam can achieve phase retrieval using only one reference pixel. As the intensity of the reference beam becomes stronger within a certain range, the number of iterations gradually decreases.